Welcome back?

to CS429H!

Ed memes of the week:

e
-1 Prog Grind Playlist

sssss

C6.2.240 ORR (immediate)

My P4 Link Register

énote@m
Gheith when he can't see us for two weeks.

vote for ur fav piazza shitpost:

A. covid spring break

~ An instructor (Ahmed Gheith) endorsed this note ~

Gheith's music preferences?

What music does Gheith like?

other

~ An instructor (Adam Schoenberg) endorsed this question ~

m undo good question | 22

B the students' answer, where students collectively construct a single answer

Click to start off the wiki answer

n the instructors' answer, where instructors collectively construct a single answer

Not(Ariana Grande) & Not(Lil Nas X)

~ An instructor (Nikita Sharma) endorsed this answer ~

vote for ur fav piazza shitpost:

A.

B.

covid spring break

gheith hates ariana grande

vote for ur fav piazza shitpost:

A. covid spring break

B. gheith hates ariana grande

C. classic grade release timeline

To the TA's: is this a reasonable timeframe for grade release?

| propose the following schedule for grade release; TA's, please let us know if this sounds reasonable. We'd really like to at least get some sort of feedback before the next midterm. And as
always, thanks for all of y'all's hard work in running discussions/office hours/making the course a really interesting one! :)

Proposed grade release times (feel free to modify as you see fit):
HW 2: April 3

HW 3: April 6

HW 4: April 10

HW 5: April 13

HW 6: April 17

HW 7: April 20

etc.

Of course, please take your time; this is just a rough estimate for what we think would be a nice timeframe. | know grading is definitely time-consuming, but y'all got this!

Where I'm at mentally

vote for ur fav piazza shitpost:

A. covid spring break

B. gheith hates ariana grande
C. classic grade release timeline
D

surfing the web

question @521

Screaming thread.

In case you need 10 blow off some steam. I'll start.

hwe

undogoos ueston |8

[E] the students' answer, wher students colectively consiruct a single answer

~ An instructor (Nikita Sharma) endorsed this question ~

AR ARSI ARSI
-

[the instructors' answer, where insiuctors cotectively consructa singe snswer

—

vote for ur fav piazza shitpost:

A.

B
C.
D
=

covid spring break

gheith hates ariana grande
classic grade release timeline
surfing the web

screaming thread

a modest proposal

so i've noticed some spirited discussion on being at the computer at the right time and trying to
receive the lowest alias number possible by doing a small commit (eg touch spamon) and then
pushing it the second it releases.

however, i have a modest proposal as a means of making this a bigger challenge: release the project
at 4:30 AM

this way, the truly determined individual gets the number they deserve

thank you for coming to my ted talk

vote for ur fav piazza shitpost:

A
B.
C.
D
=

F.

covid spring break

gheith hates ariana grande
classic grade release timeline
surfing the web

screaming thread

a modest proposal

Stress

e 429H is not an easy class

o Lots of new materials

o Unfamiliar programming environments

o Fast, often relentless pace
e Strugglingin this course is normal

o There will be times you won’t know the answer of the solution

o Thisis expected—we want we everyone to succeed, but the only way we can helpis if you ask for it
e If you find yourself overly overwhelmed or spending more time on this class than

you think you should be, please reach out to Dr. Gheith or the TAs

o Wecan help out as far as the class goes
o We can provide other resources where we are not able to help

Mental health resource available at UT

https://cmhc.utexas.edu/

Questions on lecture content?
Or about cats?

A Note on Regrades (Reminder)

e PLEASE DO NOT tell us to grade a different commit before the grades are

released
We will default to grading the last commit before the soft deadline

We will NOT grade a late submission unless you ask us to (see below)
We will NOT grade a late commit for a test case

Regrade requests:
o Ifgrades arereleased and your last commit before the soft deadline broke something that was
working in a previous commit

o You got an extension
o Youwant us to grade a late submission (50% penalty on entire project grade in this case)

=
)

Quizeeveryone say AWWW!

Question 1

Harvard Architecture:

CPU

data
memory

Von Neumann Architecture:

code
memory

CPU

| data/code

memory

Question 1

Hydra™ Architecture: (fictional)

heap
memory

CPU

stack
memory

code
memory

What is a tradeoff?
What are some tradeoffs of Hydra
vs. Von Neumann vs. Harvard?

Question 2

[2 Points] Evil Gheith has removed the ADD instruction. Name two strategies to
replace it? Give a tradeoff between the two different strategies.

e Subtract the 2s Complement
e Performthe boolean logic on the registers
e Loop Increment

Question 3

3. [2 points] Recall the three addressing modes we have in AArch64 for load and store
instructions. Are all these addressing modes necessary? Suppose the architecture only
supported unsigned offset.

a) Name one advantage and one disadvantage of this.

Question 3

Advantages of only using unsigned offset

- Would simplify decoding (because less possible options) which would lead to
less transistors, increasing energy efficiency and space availability.
- Morereadable, clearer when registers are actually being changed

Disadvantages:

- Need 2 instructions instead of 1, which wastes space in memory and disk, and
could also be less efficient

- Putting it into one instruction guarantees it will not be interrupted in the
middle. Having an interrupt in between the two instructions may lead to some
unintended consequences, such as having the stack in an inconsistent state

Question 3

b) Several fairly common programming paradigms would motivate the desire for pre and
post-indexing addressing modes. Give an example of some code that could be
optimized by using each of these addressing modes.

Pre-indexing:

a[++i]

Post-indexing:

ali++]

Question 4

[2 points] ARM and x86 take different approaches to how functions are called. In ARM, the BL instruction will store the return address in the Link
Register, and the RET instruction is like a jump to an address in a register, with extra semantic info that it is “returning”. In x86, the CALL
instruction pushes the return address to the stack, and the RET instruction pops from the stack into the program counter. What is an advantage of

each system?

Question 4

[2 points] ARM and x86 take different approaches to how functions are called. In ARM, the BL instruction will store the return address in the Link
Register, and the RET instruction is like a jump to an address in a register, with extra semantic info that it is “returning”. In x86, the CALL
instruction pushes the return address to the stack, and the RET instruction pops from the stack into the program counter. What is an advantage of
each system?

ARM: optimized for leaf function calls, RISC

x86: optimized for nested function calls, simpler assembly/machine code (fewer
instructions)

Common mistakes - LR only used for return address (can be GPR x30), have to pop from
stack to get value (can do random access), x86 has an extra register (LR is GPR, also x86 has
16 GPRs while ARM has 32), impossible to clobber (less predictable where return address
will end up if it is pushed to stack, but can still overwrite it once it’s there)

Question 5

Expression Value
sizeof (Person) 0x8
sizeof (stuff) 0x8
&(stuff->firstInitial) 0x1234
&(stuff->lastInitial) 0x1235
stuff + Ox1 0x123C
&(stuff[1].id) 0x1240
&(1[stuff].id) 0x1240
&(stuff[-2]) 0x1224

&(stuff->id) - &(stuff->age)

0x2 (this part is bad and everyone gets
credit)

P4

(for real this time)
(and we actually converted everything to ARM)

what is p4?

compilation

compilation and linking

assembling and linking

Compilers are complicated

How do you map variables to 32 registers & memory locations?
For example,intc=a+b;

e Whereisa?b?Where should c go? Are both a and b only in memory? What regs
can we modify?

p4 pro tip — do not hold values in registers

How do you map variables Ws & memory locations?

For example,intc=a+b;

e Whereisa?b?Where should c go? Are both a and b only in memory? What regs
can we modify?

P4 pro tip — use comments in your generated
Assembly!

Just like comments in C!

Canuse
//
and

/*

Stack Machines

Let’s say our architecture has only one general purpose register: %rsp. To make up for
this, we are changing the ISA to only include the following instructions:

PUSH val // pushes a value onto the stack
ADD // pops 2 values, adds them, and pushes the result
NEGATE // pops a value, negates it, and pushes the result

PRINT // pops from the stack and prints

Calling Convention

e C ABIfor functions defines which registers are for parameters and returning
e Only necessary to call external functions (that you don’t compile)

e Calling your own functions can use whatever convention you want
o Canyou change your convention based on anything?
o Does it have to be consistent with itself?
o What are some tradeoffs of staying true to the ARM calling convention?

Using Labels

.section .data
varlable: .quad 0x0123456789ABCDEF

foo: .quad 0x0
.section .text _
o foo fun {...}
varliable = foo (0)
main:
adrp x0, funl
add x0, x0, :lol2:funl
adrp x1, foo
add x1l, x1, :lol2:foo
str x0, [x1]
ldr x1, [x1]
mov x0, #0
blr x1
adrp x1, variable
add x1l, x1, :lol2:variable
str x0, [x1]

//data segment

Printing Things! ECEERrTToy
puts("format: .byte 's%', 'l', 'u', 10, 0");

What does this do?

//data segment

Printing Things! EFCERTTOr
puts("format: .byte '%',

S cat test.c $ objdump -d a.out

00000000004005d4 <main>:
4005d4: a9be7bfd stp x29, x30, [sp, #-32]!
4005d8: 910003fd mov x29, sp

#include <stdio.h>

int main(int argc, char **argv) { 4005dc: bo@e1fed str wo, [sp, #28]
4005e0: f9o000be1 str x1, [sp, #16]
printf("%lu\n", argc); 4005e4: b9401fel 1dr w1, [sp, #28]
4005e8: 90000000 adrp x0, 400000 <__abi_tag-0x254>
return @; 4005ec: 911ac000 add x0, x0, #0x6bo
4005f0: 97ffffa8 bl 400490 <printfeplt>
40054 : 52800000 mov w0@, #0Ox0 /] #0
} 4005f8: a8c27hfd ldp x29, x30, [sp]l, #32

4005fc: d65f03co ret

S readelf -p .rodata a.out
S gce test.c
String dump of section '.rodata':
[18] %lurJ

How to debug compiled test cases?

~gheith/public/gemu 5.1.0 old/bin/gemu-aarch64 -g 1234
./file.arm > ./file.out

In another terminal window:*

~gheith/public/gcc-arm-10.3-2021.07-x86 64-aarch64-none-1linu
x-gnu/bin/aarch64-none-linux-gnu-gdb ./file.arm

> target remote localhost:1234
> b main

> continue

*As of Thursday, Gheith’'s ARM GDB was not working after a dependency was updated on the lab machines.
He is looking into it

Change your Makefile for ARM Debugging
Symbols

Change Line 67 of your Makefile. Add a -g file so that Line 67 reads

How to debug compiled test cases (Elie’s Version)

~gheith/public/gemu 5.1.0 old/bin/gemu-aarch64 -g 1234
./file.arm > ./file.out

In another terminal window:
~elies/public/bin/gdb <file.arm>
> target remote localhost:1234

> b main

> continue

debugging a compiler?

how to use gdb with assembly?

e layout asm — like “layout src’” but for assembly

e ni— like next butinstead of next statement, it goes to the next instruction

e si— like step butinstead of stepping into statements, it steps into calls and
jumps

e inforeg— display the contents of all the registers

e tuireggeneral

PS5

How to Heap

e Heapishard
e C(Consistency

e Keep consistency through invariants
o Aninvariant should be true at the beginning and end of all heap functions
o They can be violated temporarily in the middle of these functions
o Examples of invariants?

How to Heap

Structs and Functions! Strunctions!

What kind of structs might you need?
What kind of functions might you need?
What kind of strunctions might you need?

How to Heap

struct attribute ((packed)) foo {
int a : 2;
int b : 6;

I

e What s sizeof(struct foo)?
e Why might you want to do this?

Debugging Tips

e How canyou check your invariants?

e Diagnostics—use a heap_check() function
o Pretty-print entire heap state
o Checkinvariants programmatically
o Call after every malloc/free
m +Catchbugsearly
m - Makes your code slooow 3
o Callonlyincertain cases
o e.g.(gdb)call print_heap()
m +Lessverbose/spammy
m - Lower coverage

e Downsize the test case

o Small test cases are easier to debug
e Debuginteractively with gdb!

o watchand rwatch
(gdb) watch head

(gdb) rwatch (long *) 0x832a8b0
(gdb) watch curr_block->free

o O O

Debugging Tips

CFLAGS = -Werror -Wall -03 -g -std=cll
changes to
CFLAGS = -Werror -Wall -00 -g -std=cll

Why can'’t we use printf debugging for the heap?

Debugging Tips - Conditional Compilation

CFLAGS = -Werror -Wall -03 -g -std=cll
changes to
CFLAGS = -Werror -Wall -03 -g -std=cll -DDEBUG

Then in your code, you can have
#ifdef DEBUG

heap check()

fendif

Questions?

000088558558S8$S8S0000
0058888558588585885888858S0

0088888885888 SSSSSSSSSSS888SSSSo oS SS oS
o $ oo 05885555 SSSSSSSSSSSSSSSSSSSSSSSS8S8SSSSo $$ $$ So
00 $$"S 08S8SSSSSSS $SSSSSSSSSSSS SERRRISS N $8$808%0$

"$8$8$S%08 0$8888888$ $§$8$858888$ $3885888SS0 $$8$8$8S
§$888S8$ $§$8$858888$ $§$8$858888$ $385888858585858888888S
$S83888888585858888888S $$858888888SS $$835888888888S " "8S8S

1888888858585 8888585858588588558585858858855858888888 "8
888 0883858555555858555855585585555555858858888858888888 "$$So
088" $$$ $$So
$$$ 888585585858585558558555555585885858885888888" "$8888S00000888S0
038838000083838S 53883555585 855558555555585885888888888S o$$$$$$$$$$$$$$$$$
$$$$$$$$ 8888 $S88585S858588888858585888888888888S §88s"
$$$$ "3888885585858585888888588888 0S
"$8So " S88888858585888888"8S $S$$
$$So "$8" 88888 0$S$
SSSo 0$8S$8"
"8S0 03$38$%0"3%0 0$$8$
"$$8$S00 ""388508838880 0888S""
""8888S0000 "$850888888888" "
""8$38388800 $8388388S8S
" 88888S8SS8SSS
$$858888888S
$$85888888
SR

