
Welcome back2²
to CS429H!

Week 4

Ed memes of the week:

vote for ur fav piazza shitpost:

A. covid spring break

vote for ur fav piazza shitpost:

A. covid spring break

B. gheith hates ariana grande

vote for ur fav piazza shitpost:

A. covid spring break

B. gheith hates ariana grande

C. classic grade release timeline

vote for ur fav piazza shitpost:

A. covid spring break

B. gheith hates ariana grande

C. classic grade release timeline

D. surfing the web

vote for ur fav piazza shitpost:

A. covid spring break

B. gheith hates ariana grande

C. classic grade release timeline

D. surfing the web

E. screaming thread

vote for ur fav piazza shitpost:

A. covid spring break

B. gheith hates ariana grande

C. classic grade release timeline

D. surfing the web

E. screaming thread

F. a modest proposal

Stress
● 429H is not an easy class

○ Lots of new materials
○ Unfamiliar programming environments
○ Fast, often relentless pace

● Struggling in this course is normal
○ There will be times you won’t know the answer of the solution
○ This is expected—we want we everyone to succeed, but the only way we can help is if you ask for it

● If you find yourself overly overwhelmed or spending more time on this class than
you think you should be, please reach out to Dr. Gheith or the TAs

○ We can help out as far as the class goes
○ We can provide other resources where we are not able to help

Mental health resource available at UT

https://cmhc.utexas.edu/

Questions on lecture content?
Or about cats?

A Note on Regrades (Reminder)
● PLEASE DO NOT tell us to grade a different commit before the grades are

released

● We will default to grading the last commit before the soft deadline

● We will NOT grade a late submission unless you ask us to (see below)

● We will NOT grade a late commit for a test case

● Regrade requests:
○ If grades are released and your last commit before the soft deadline broke something that was

working in a previous commit

○ You got an extension

○ You want us to grade a late submission (50% penalty on entire project grade in this case)

Quiz everyone say AWWW!
re

vi
ew

Question 1
Harvard Architecture: Von Neumann Architecture:

CPU

data
memory

code
memory

CPU data/code
memory

Question 1
HydraTM Architecture: (fictional) ● What is a tradeoff?

● What are some tradeoffs of Hydra

vs. Von Neumann vs. Harvard?

CPU

heap
memory

stack
memory

code
memory

Question 2
[2 Points] Evil Gheith has removed the ADD instruction. Name two strategies to

replace it? Give a tradeoff between the two different strategies.

● Subtract the 2s Complement

● Perform the boolean logic on the registers

● Loop Increment

Question 3

Question 3
Advantages of only using unsigned offset

- Would simplify decoding (because less possible options) which would lead to
less transistors, increasing energy efficiency and space availability.

- More readable, clearer when registers are actually being changed

Disadvantages:

- Need 2 instructions instead of 1, which wastes space in memory and disk, and
could also be less efficient

- Putting it into one instruction guarantees it will not be interrupted in the
middle. Having an interrupt in between the two instructions may lead to some
unintended consequences, such as having the stack in an inconsistent state

Question 3

Pre-indexing:

a[++i]

Post-indexing:

a[i++]

Question 4
[2 points] ARM and x86 take different approaches to how functions are called. In ARM, the BL instruction will store the return address in the Link
Register, and the RET instruction is like a jump to an address in a register, with extra semantic info that it is “returning”. In x86, the CALL
instruction pushes the return address to the stack, and the RET instruction pops from the stack into the program counter. What is an advantage of
each system?

Question 4
[2 points] ARM and x86 take different approaches to how functions are called. In ARM, the BL instruction will store the return address in the Link
Register, and the RET instruction is like a jump to an address in a register, with extra semantic info that it is “returning”. In x86, the CALL
instruction pushes the return address to the stack, and the RET instruction pops from the stack into the program counter. What is an advantage of
each system?

ARM: optimized for leaf function calls, RISC

x86: optimized for nested function calls, simpler assembly/machine code (fewer
instructions)

Common mistakes - LR only used for return address (can be GPR x30), have to pop from
stack to get value (can do random access), x86 has an extra register (LR is GPR, also x86 has
16 GPRs while ARM has 32), impossible to clobber (less predictable where return address
will end up if it is pushed to stack, but can still overwrite it once it’s there)

Question 5

Expression Value

sizeof(Person) 0x8

sizeof(stuff) 0x8

&(stuff->firstInitial) 0x1234

&(stuff->lastInitial) 0x1235

stuff + 0x1 0x123C

&(stuff[1].id) 0x1240

&(1[stuff].id) 0x1240

&(stuff[-2]) 0x1224

&(stuff->id) - &(stuff->age) 0x2 (this part is bad and everyone gets
credit)

P4
(for real this time)

(and we actually converted everything to ARM)

what is p4?

gccp4.c p4

*.fun

*.s gcc *.arm

compilation and linking

assembling and linking

compilation

source file

executable

*.args

*.out

Text file

Compilers are complicated
How do you map variables to 32 registers & memory locations?

For example, int c = a + b;

● Where is a? b? Where should c go? Are both a and b only in memory? What regs

can we modify?

p4 pro tip — do not hold values in registers
How do you map variables to 32 registers & memory locations?

For example, int c = a + b;

● Where is a? b? Where should c go? Are both a and b only in memory? What regs

can we modify?

p4 pro tip — use comments in your generated
Assembly!

Just like comments in C!

Can use

//

and

/* … */

Stack Machines
Let’s say our architecture has only one general purpose register: %rsp. To make up for

this, we are changing the ISA to only include the following instructions:

PUSH val // pushes a value onto the stack

ADD // pops 2 values, adds them, and pushes the result

NEGATE // pops a value, negates it, and pushes the result

PRINT // pops from the stack and prints

Calling Convention
● C ABI for functions defines which registers are for parameters and returning

● Only necessary to call external functions (that you don’t compile)

● Calling your own functions can use whatever convention you want
○ Can you change your convention based on anything?

○ Does it have to be consistent with itself?

○ What are some tradeoffs of staying true to the ARM calling convention?

Using Labels
.section .data
variable: .quad 0x0123456789ABCDEF
foo: .quad 0x0

.section .text
fun1: …

main:
adrp x0, fun1
add x0, x0, :lo12:fun1
adrp x1, foo
add x1, x1, :lo12:foo
str x0, [x1]
ldr x1, [x1]
mov x0, #0
blr x1
adrp x1, variable
add x1, x1, :lo12:variable
str x0, [x1]

foo = fun {...}
variable = foo(0)

Printing Things!
What does this do?

Printing Things!
$ cat test.c

#include <stdio.h>

int main(int argc, char **argv) {

 printf("%lu\n", argc);

 return 0;

}

$ gcc test.c

$ objdump -d a.out
...
00000000004005d4 <main>:
 4005d4: a9be7bfd stp x29, x30, [sp, #-32]!
 4005d8: 910003fd mov x29, sp
 4005dc: b9001fe0 str w0, [sp, #28]
 4005e0: f9000be1 str x1, [sp, #16]
 4005e4: b9401fe1 ldr w1, [sp, #28]
 4005e8: 90000000 adrp x0, 400000 <__abi_tag-0x254>
 4005ec: 911ac000 add x0, x0, #0x6b0
 4005f0: 97ffffa8 bl 400490 <printf@plt>
 4005f4: 52800000 mov w0, #0x0 // #0
 4005f8: a8c27bfd ldp x29, x30, [sp], #32
 4005fc: d65f03c0 ret
...
$ readelf -p .rodata a.out

String dump of section '.rodata':
 [18] %lu^J

How to debug compiled test cases?
~gheith/public/qemu_5.1.0_old/bin/qemu-aarch64 -g 1234
./file.arm > ./file.out

In another terminal window:*

~gheith/public/gcc-arm-10.3-2021.07-x86_64-aarch64-none-linu
x-gnu/bin/aarch64-none-linux-gnu-gdb ./file.arm

> target remote localhost:1234

> b main

> continue

*As of Thursday, Gheith’s ARM GDB was not working after a dependency was updated on the lab machines.
He is looking into it

Change your Makefile for ARM Debugging
Symbols
Change Line 67 of your Makefile. Add a -g file so that Line 67 reads

-${ARM_GCC} -static -g -o $*.arm $*.s

How to debug compiled test cases (Elie’s Version)
~gheith/public/qemu_5.1.0_old/bin/qemu-aarch64 -g 1234
./file.arm > ./file.out

In another terminal window:

~elies/public/bin/gdb <file.arm>

> target remote localhost:1234

> b main

> continue

debugging a compiler?
how to use gdb with assembly?

● layout asm → like `layout src` but for assembly

● ni → like `next` but instead of next statement, it goes to the next instruction

● si → like `step` but instead of stepping into statements, it steps into calls and

jumps

● info reg → display the contents of all the registers

● tui reg general

P5

How to Heap
● Heap is hard

● Consistency
● Keep consistency through invariants

○ An invariant should be true at the beginning and end of all heap functions

○ They can be violated temporarily in the middle of these functions

○ Examples of invariants?

How to Heap
● Structs and Functions! Strunctions!

● What kind of structs might you need?

● What kind of functions might you need?

● What kind of strunctions might you need?

How to Heap
struct __attribute__((packed)) foo {

int a : 2;

int b : 6;

};

● What is sizeof(struct foo)?

● Why might you want to do this?

Debugging Tips
● How can you check your invariants?
● Diagnostics—use a heap_check() function

○ Pretty-print entire heap state
○ Check invariants programmatically
○ Call after every malloc/free

■ + Catch bugs early
■ − Makes your code slooow ⌛

○ Call only in certain cases
○ e.g. (gdb) call print_heap()

■ + Less verbose / spammy
■ − Lower coverage

● Downsize the test case
○ Small test cases are easier to debug

● Debug interactively with gdb!
○ watch and rwatch
○ (gdb) watch head
○ (gdb) rwatch (long *) 0x832a8b0
○ (gdb) watch curr_block->free

Debugging Tips
CFLAGS = -Werror -Wall -O3 -g -std=c11

changes to

CFLAGS = -Werror -Wall -O0 -g -std=c11

Why can’t we use printf debugging for the heap?

Debugging Tips - Conditional Compilation
CFLAGS = -Werror -Wall -O3 -g -std=c11

changes to

CFLAGS = -Werror -Wall -O3 -g -std=c11 -DDEBUG

Then in your code, you can have

#ifdef DEBUG

heap_check()

#endif

Questions?

 oooo$$$$$$$$$$$$oooo
 oo$$$$$$$$$$$$$$$$$$$$$$$$o
 oo$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o o$ $$ o$
 o $ oo o$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o $$ $$ $$o$
 oo $ $ "$ o$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$o $$$o$$o$
 "$$$$$$o$ o$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$o $$$$$$$$
 $$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$
 $$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$$$$$$ """$$$
 "$$$""""$$$ "$$$
 $$$ o$$ "$$$o
 o$$" $$$ $$$o
 $$$ $$$" "$$$$$$ooooo$$$$o
 o$$$oooo$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ o$$$$$$$$$$$$$$$$$
 $$$$$$$$"$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$""""""""
 """" $$$$ "$$$$$$$$$$$$$$$$$$$$$$$$$$$$" o$$$
 "$$$o """$$$$$$$$$$$$$$$$$$"$$" $$$
 $$$o "$$""$$$$$$"""" o$$$
 $$$$o o$$$"
 "$$$$o o$$$$$$o"$$$$o o$$$$
 "$$$$$oo ""$$$$o$$$$$o o$$$$""
 ""$$$$$oooo "$$$o$$$$$$$$$"""
 ""$$$$$$$oo $$$$$$$$$$
 """"$$$$$$$$$$$
 $$$$$$$$$$$$
 $$$$$$$$$$"
 "$$$""""

